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Abstract

Printing, photocopying and scanning processes degrade the image quality of a docu-
ment. Statistical models of these degradation processes are crucial for document image
understanding research. Models allow us to predict system performance; conduct con-
trolled experiments to study the break-down points of the systems; create large multi-
lingual data sets with groundtruth for training classifiers; design optimal noise removal
algorithms; choose values for the free parameters of the algorithms; and so on. Although
research in document understanding started many decades ago, only two document degra-
dation models have been proposed thus far. Furthermore, no attempts have been made
to statistically validate these models.

In this paper we present a statistical methodology that can be used to validate local
degradation models. This method is based on a non-parametric, two-sample permutation
test. Another standard statistical device — the power function — is then used to choose
between algorithm variables such as distance functions. Since the validation and the
power function procedures are independent of the model, they can be used to validate
any other degradation model. A method for comparing any two models is also described.
It uses p-values associated with the estimated models to select the model that is closer
to the real world.
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Abstract

Printing, photocopying and scanning processes degrade the image quality of a docu-
ment. Statistical models of these degradation processes are crucial for document image
understanding research. Models allow us to predict system performance; conduct con-
trolled experiments to study the break-down points of the systems; create large multi-
lingual data sets with groundtruth for training classifiers; design optimal noise removal
algorithms; choose values for the free parameters of the algorithms; and so on. Although
research in document understanding started many decades ago, only two document degra-
dation models have been proposed thus far. Furthermore, no attempts have been made
to statistically validate these models.

In this paper we present a statistical methodology that can be used to validate local
degradation models. This method is based on a non-parametric, two-sample permutation
test. Another standard statistical device — the power function — is then used to choose
between algorithm variables such as distance functions. Since the validation and the
power function procedures are independent of the model, they can be used to validate
any other degradation model. A method for comparing any two models is also described.
It uses p-values associated with the estimated models to select the model that is closer
to the real world.
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1 Introduction

Printing, photocopying and scanning processes degrade the image quality of any doc-
ument. Statistically valid models of these degradation processes can impact document
image understanding research in many ways. Degradation models can be used to con-
duct controlled experiments to study the breakdown points of OCR systems; create large
multilingual data sets with groundtruth for training classifiers; design optimal noise re-
moval algorithms; choose values for the free parameters of the algorithms; predict OCR
performance; and so on. Whereas research in document understanding started decades
ago, only two document degradation models have been proposed thus far. Furthermore,
no attempts have been made to statistically validate these models.

The current OCR evaluation methods rely on scanned documents, corresponding
hand-entered ASCII groundtruth strings, and string matching algorithms that compare
the groundtruth string against the OCR-generated string. The errors in the groundtruth
are reduced by a process of cross-checking. This method is very expensive, laborious, and
prone to errors. Furthermore, since the datasets are expensive, it is not possible to create
large datasets that are representative of the variety of layout, font, and degradation levels
seen in real-world documents. Despite these problems, various document databases with
groundtruth have been created.

Our methodology for characterizing OCR algorithms is based on evaluating the al-
gorithms on synthetically degraded documents. First, a wordprocessor is used to create
an ideal document in any language, format or style. A bitmap version of this document
is then created and degraded using a computer model of the real degradation process.
This method has many advantages. First, since the ideal document is created using a
wordprocessor, the groundtruth information associated with each character — location,
identity, font type, etc. — is known without error. Second, the word processor can be
used to reformat the documents (two columns, one column, various font types, sizes,
etc.) to study the sensitivity of the OCR algorithm to these variables. Third, since the
degradation model is under our control, we can create documents with varying levels of
degradation and study how and where the OCR algorithm breaks down. Fourth, sample
size is not a problem at all — any number of degraded samples can be created since
all that needs to be done is to simulate another set of characters. In addition, there is
no dearth of formatted documents — we create such documents daily, and so do aca-
demic journal publishers. Fifth, the model itself can be used in creating noise removal
algorithms, training classifiers, choosing algorithm parameters, etc.

The main drawback of the above methodology is that it relies heavily on the simulation
model being correct. That is, it assumes that the simulation model closely mimics reality.
It is thus imperative that we validate the degradation model against real data. Only
then can the simulations be used in place of real data. If the degradation model is not
validated, results on the synthetically degraded documents should be used with caution,
though they are still useful since they give some indication about the performance of
the OCR algorithm.

In this paper we present a statistical methodology that can be used to validate the
local degradation models. This method i1s based on a non-parametric, two-sample per-
mutation test. Another standard statistical device — the power function — is then used
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to choose between algorithm variables such as distance functions. Since the validation
and the power function procedures are independent of the model, they can be used to
validate any other degradation model. A method of comparing any two models is also
described. It uses p-values associated with the estimated models to select the model that
is closer to the real world.

In Section 2 we survey the related literature in the areas of degradation models,
model validation, and statistical hypothesis testing and discuss their shortcomings. In
Section 3 we describe our document degradation model for the local distortions that occur
while printing, photocopying and scanning documents. The model is independent of the
language in which the document is written. Our validation methodology is described in
Section 4, and in Section 5 we apply it to datasets with known distributions to understand
the performance of the permutation tests. In Section 6 we give experimental protocols
and results of validation experiments on document images, and in Section 7 we present
conclusions.

2 Related Literature

The earliest work on document degradation models is that of Baird [2, 3, 4]. Unfortu-
nately, his degradation model is not validated. Furthermore, his paper advocates the
use of isolated, synthetically degraded characters. Thus the degradation due to merg-
ing of neighboring characters is not reflected in his model. In addition, the uni-gram
and bi-gram occurrence probabilities of characters in real-world text are not reflected in
isolated-character experiments.

In contrast, our document degradation model, which is described in Section 3, advo-
cates the use of complete documents for generating synthetically degraded characters. It
thus takes into account the degradations arising due to merging of characters, the occur-
rence probabilities of individual characters, and the variability in the layout structure of
the documents. The pixel degradations themselves are based on a local morphological
model, which models the final spatial characteristics of the degradation process rather
than the underlying physical process.

To the best of our knowledge, the only other work on validation of document degra-
dation models is that of Nagy and Lopresti [23, 21, 22]. They are of the opinion that
a degradation model is valid if the OCR confusion matrices that result from synthet-
ically degraded documents are similar to the OCR confusion matrices produced from
real documents. Unfortunately, this methodology validates the model-OCR combination
and not the model itself. For instance, if the OCR system automatically filters noise,
their validation process will not detect any difference between the real documents and
the synthetically degraded documents even if the degradation process adds noise to the
document. Furthermore, although they treat the OCR as a black box, the OCR algo-
rithm itself has many parameters that can greatly influence the decisions of the validation
procedure. Another drawback of their approach is that they do not indicate how their
validation procedure can be compared to other validation procedures.

Our validation method, on the other hand, reduces the problem of model validation
to a nonparametric statistical hypothesis testing problem, which is a well studied and ac-
cepted method in statistics [8, 7]. In addition, we use simple character distance functions
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for the validation procedure, instead of entire OCR systems. Although the validation
process now depends on these distance functions, they are much simpler than OCR black
boxes. Finally, we provide a technique for comparing our validation method with other
validation methods. This comparison procedure is based on “power functions,” which
again are standard statistical devices for comparing hypothesis testing procedures.

3 A Document Degradation Model

In this section we describe a document degradation model for local distortions that are
introduced during the printing, photocopying and scanning processes. A model for the
perspective and illumination distortions that get introduced when we photocopy or scan
thick bound books is described in [15, 16, 12].

Our local document degradation model accounts for (i) pixel inversion (from fore-
ground to background and vice versa) that occurs independently at each pixel due to
light intensity fluctuations, sensitivity of the sensors, and the thresholding level, and (ii)
blurring that occurs due to the point-spread function of the scanner optical system. We
model the pixel-flipping probability of a background pixel as an exponential function of
its distance from the nearest boundary pixel. The parameter «q is the initial value for
the exponential and the decay speed of the exponential is controlled by the parameter
a. The foreground and background 4-neighbor distance are computed using a standard
distance transform algorithm (see [5]). The flipping probabilities of the foreground pix-
els are similarly controlled by Gy and 3. The parameter 5 is the constant probability of
flipping for all pixels. Finally, the last parameter k&, which is the size of the disk used
in the morphological closing operation, accounts for the correlation introduced by the
point-spread function of the optical system.

The degradation model thus has six parameters: © = (5, ag, @, fo, 8, k)". These pa-
rameters are used to degrade an ideal binary image as follows:

1. Compute the distance d of each pixel from the character boundary.
2. Flip each foreground pixel with probability p(0|1,d, ag, a) = age™*% 4 1.
3. Flip each background pixel with probability p(1|0,d, 3o, 5) = Boe™ P 4.

4. Perform a morphological closing operation with a disk structuring element of di-
ameter k.

Software for simulating noisy documents using the above degradation model is avail-
able from the University of Washington English Document Database I, and the model
has also been described in the literature [16, 15]. The application of the various steps
of the model is illustrated in Figure 1. In Figure 1(a) we show an ideal character. The
distance transform of the foreground of (a) is shown in (b). The brighter pixels are fur-
ther away from the pixel boundary. The distance transform of the background is shown
in Figure 1(d). The ideal image after its pixels have been flipped according to the model
is shown in (d). The final image after the closing operation is shown in (e).

The procedure described above works on bit-mapped images. Since there is no restric-
tion on the size of the image that can be degraded, or the language of the written text, an
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Figure 1: Local document degradation model: (a) Ideal noise-free character; (b) Distance
transform of the foreground; (c) Distance transform of the background; (d) Result of
the random pixel- ﬂipping process (the probability of a pixel flipping is p(0|d, 3, f) =

p(1]d, a,b) = ape™*%; here a = § = 2, ap = By = 1); (e) Morphological closing of the
result in (d) by a 2 x 2 binary structuring element.

~~
-
~—

entire document page image can be degraded using this model. In fact, since typesetting
is under the experimenter’s control, the same text can be re-formatted in various styles
(single column, multiple column, report, book, etc.), font types (Roman, Helvetica, etc),
and font sizes (9pt, 10pt, 12pt, etc.). Thus the performance of any character recognition
system can be studied by providing as input the same (or different) text formatted in
various styles with varied but controlled degradation.

We now show examples where we degrade complete document pages using our degra-
dation model. In Figure 2(a), we show an ideal document formatted in WTEX using the
IEEE Transactions typesetting style. In Figure 2(b) we show a degraded version of the
document in Figure 2(a).

The noise-free documents are typeset using the WTEX formatting system [20, 19].
The ASCII files containing the text and the BTEX typesetting information are then
converted into a device-independent format (DVI) using BTEX. A software program
called DVI2TIFF — which is a modified version of a DVI file previewer called XDVI
[24] — is run to produce one bit/pixel binary images in TIFF format from the DVI files.
Besides producing the binary images of the documents, DVI2TIFF also produces the
groundtruth information regarding each character in the document image.

The local document degradation model is another software program called DDM.
This program takes as input an ideal binary document image in TIFF format, and a file
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In contrast to the approximative character of numerical

neural systems consist essentially o symbol-
ic mathematical objects according o cortain mathemationt
and biological knowledge. A simple observation has been
made that this work can be done more efficiently with com-
puter assistance by using and extending methods and sys-
tems of symbolic computation. In this paper, after pre-
senting the mathematical characteristics of neural systems
and a brief review on Liapunov stability theory, we present
some features and capabilities of existing systems and our
extension for manipulating objects occurring in the analy-
sis of neural systems. Then, some strategies and a toolkit
developed in MACSYMA for computer aided analysis and
derivation are described. A concrete example is given to
demonstrate the derivation of a hybrid neural system, L.e. a
system which in its learning rule combines elements of su-
pervised and unsupervised learning. The future work and
directions on this topic are indicated.

Keywords— CA system, computer aided analysis and deriva-
tion, Liapunov function, neural system, symbolic computa-
tion.

1. INTRODUCTION
SINCE the carly 1940s a large number of artificial neural
systems have been proposed by neural scientists. The dy-
namical behavior of these systems may be mathematically
described by sets of coupled equations like differential e-
quations for formal neurons with graded response. The
investigation of essential features of neural systems such as
stability and adaptation depends strongly upon the state
of the mathematical theory to be applied and on a con-
crete and efficient analysis of dynamical equations. Unlike
abstract theoretical research in which the mathematical
objects adopted are frequently assumed to be of certain
canonical form, the neurodynamics is usually complicat-
ed due to various biological facts which should be taken
account of to a degree as large as possible. Consequently,
this makes the analysis and derivation very complex, some-
times to an extent which is beyond human capacity, and
the traditional methods and tools of mathematics are not
always sufficient. It is therefore proposed in [19] to use and
extend the methods and software systems of symbolic com-
putation for handling, analyzing and constructing neuro-
dynamics and its related objects. The present paper is the
continuation of our work in this direction. The attempt is
to demonstrate how symbolic computation can be applied
to aid the analysis and derivation of neural systems.
This would be where the author affliation would be, together with the

IEBE log Number ke so.
The rescarch of D. Wang is supported by a grant from SIEMENS AQ
mboli

symbolic treats objects with se-
mantics like functions, formulae and programs. A variety
of software systems for performing symbolic computation
have been developed for research and applications in nat-
ural and technical sciences. However, the existing systems
cannot be directly used for the analysis and derivation of
neural systems as the operations on the occurring objects,
particularly those involving an unspecified number of argu-
ments like indefinite summations, have not yet been taken
into account. To achieve our goal, some rules for differen-
tiating and integrating indefinite summations with respect
to indexed variables were proposed [20]. A toolkit has been
designed and implemented in MACSYMA for manipulat-
ing these objects occurring in the analysis and derivation
of neural systems [21].

In the next section, we introduce the general method
and techniques for the stability analysis of artificial neural
systems. The role of symbolic computation for representing
and manipulating the objects concerning neural systems is
discussed in Section IIL In Section IV we present some
strategies for using computer algebra (CA) systems and
their extension to analyse the stability of neural systems
and to derive novel stable systems. A brief description
of a toolkit developed in MACSYMA is also provided. A
concrete example is given in Section V to illustrate the
derivation of a hybrid model by our toolkit. Section VI
contains a discussion on future developments. The paper
is closed with a brief summary.

II. STABILITY ANALYSIS OF NEURAL SYSTEMS

Consider artificial neural systems which are described by
coupled systems of differential equations of the form

= F(z,w, K) (1)
and

= G(a,w,K) (2)
where @ = (21(t),...,zn(t)) is the activation state vec-

tor, w = (wj(t)) is the weight matrix of dimension n x
n, nis the number of nodes and K is an external time-
independent pattern vector. Such systems of differential
equations which describe the neural model will occasional-
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Figure 2: (a) An ideal document page typeset using WIEX and IEEE Transactions type-
setting style. (b) A synthetically degraded version of the document in (a).

containing the degradation model parameter values, and produces the binary degraded
images in TIFF format.

Both programs DVI2TIFF and DDM are implemented using the C language
and have been tested on SUN and IBM machines running the UNIX operating system.
The software is available on the UW CD-ROM-1 [9].

4 Model Validation and Parameter Estimation

4.1 Statistical Problem Definition

In this section we formulate the degradation model validation problem as a statistical
problem. Although degradation of the document is over the entire page, the degrada-
tion process itself is local. That is, degradation in one region does not influence the
degradation process in another sufficiently distant region. More precisely, the degrada-

tion at a pixel is influenced only by pixels within a local neighborhood. Thus, one way



to characterize the degradation process is to study the degradation of local patterns.
Since the most common patterns that occur on a document page are characters, we sta-
tistically characterize the degradation of individual characters on the page and use this
characterization to estimate the parameters of a degradation model that produces similar
degradations.

Assume that a scanned character is represented by a 30 x 30 matrix of zeros and
ones. This matrix can be represented as a 1000 x 1 vector z (30 x 30 ~ 1000). Let
B be the space of D = 1000-dimensional binary vectors, that is, B = {0,1}”. Now,
let x1,29,..., 25 € B be independent and identically distributed D-dimensional vectors
representing instances of degraded characters produced from the same class w. That is,
each z; is a degraded character that is produced from the same ideal pattern w (say the
ideal character ‘e’) and the same degradation process. The validation problem we need
to address is:

Suppose we are given a set of real degraded instances xy,...,zxy € B of the
pattern w and another set of synthetic degraded instances yy,...,yp € B of
the pattern w. Test the null hypothesis that yq,...,ya and x1,...,zy, are
samples taken from the same underlying population, to a specified significance
level e.

In our case D is large, typically on the order of 1000. Thus the number of possible
z;’s is 21999 which is approximately equal to 10 — a dauntingly large number. The
available sample size, N, is typically on the order of 1000. Thus the z;’s occupy the
space B extremely sparsely, which implies that the density function cannot be estimated
reliably from the sample. This fact prohibits us from performing any standard statistical
test based on density estimates. In the next section we describe a non-parametric method
that overcomes this problem.

4.2 Permutation Tests and Model Validation

In this section we describe a nonparametric validation procedure that can be used to
statistically validate any document degradation model. Suppose we are given a set of
real degraded characters X = {z1,z2,...,2x}, and another set of artificially degraded
characters Y = {y1,y2,...,ynm} that were created by perturbing an ideal character with
a document degradation model. We can assume that the characters x; and y; are binary
matrices of size (approximately) 30 x 30. Note that every z; and y; can be of different
size because the scanned characters can be of different sizes. The question that needs
to be addressed is whether or not the z;’s and the y;’s come from the same underlying
population. At this point it does not matter where the x;’s and the y;’s came from; they
could both be synthetically generated, or both be real instances, or one of them could be
synthetic and the other real. A statistical hypothesis test can be performed to test the
null hypothesis that the underlying population distributions of the z;’s and y;’s are the
same.

Standard parametric hypothesis testing procedures are not usable for our problem
because the sizes of the binary matrices x; and y; are not fixed. Furthermore, the size
of the space to which they belong is very large (approximately 279
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character to be of size 30 x 30) and so while in principle it is possible to estimate the
density function, in practice it is not possible to do so because of the small sample size.
Instead, we now describe a nonparametric permutation test (see [8, 7]) that performs this
hypothesis test.

1. Given (i) thereal data X = {z1,22,..., 2N}, (ii) the syntheticdata Y = {y1,y2,...,ym},
(iii) a distance function p(X,Y’) on sets, (iv) a distance function é(x,y) on charac-
ters, and (v) the size € of the test (i.e. misdetection rate = ¢).

2. Compute dy = p(X,Y).

3. Create a new sample Z = {z1,...,2x,¥y1, ..., ym}. Thus Z has N + M elements
labeled z;, e =1,..., N + M.

4. Randomly permute (reorder) Z.

5. Partition the set Z into two sets X’ and Y’ where X' = {z,...,2n5} and Y’ =
{ZN+17 SRR ZN-}-M}‘

6. Compute d; = p(X",Y").

7. Repeat steps 4, 5 and 6 K times to get K distances dy,...,dx.

8. Compute the empirical distribution of the d;’s: P(d > v) = #{k|d, > v}/ K
9. Compute the p-value: ¢ = P(d > dp).

10. Reject the null hypothesis that the two samples come from the same population if
€ < €.

Parametric Population Parametric Population
unknown 6y unknown 6y

'

‘ X=Xq, Xg, - XN Y=Y1, Y20 YN ‘
1 1

' {
do Null Distribution,F
* (non-parametric)

Reject if <gg

Figure 3: Here we show how the nonparametric test works when the two samples X and
Y are from arbitrary distributions. For our problem, x; and y; are binary characters. In
this case the null distribution cannot be determined theoretically.
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Figure 4: This figure shows the permutation procedure for computing the null distribu-
tions.

The above procedure computes the null distribution of the distance function p(X,Y)
nonparametrically. In a standard parametric hypothesis-testing procedure, the forms of
the distributions of # and y are known (usually assumed to be Gaussian) and so the
null distribution of the test statistic p(X,Y) is known. In contrast, the permutation test
does not make any prior assumption regarding the distributions of x and y. Instead, an
empirical null distribution is created by randomly permuting the data set Z and creating
a histogram of computed test statistics (d;’s).

By design, the size of the test, €, is fixed. Thus, irrespective of the distance func-
tion p(X,Y), the percentage of time that the validation procedure rejects a true null
hypothesis that the two samples are from the same underlying population is e. In other
words, the probability of misdetection is e. What is not fixed is the probability of false
alarm, ~. which is the probability that the procedure claims that X and Y come from the
same underlying population when, in fact, they come from different underlying popula-
tions. Although the use of various distance functions for p and 6 gives rise to the same
probability of misdetection €, each has a different probability of false alarm ~,

It is important to note that if two samples X and Y pass the validation procedure,
this does not mean that we accept the null hypothesis. Rather, it means that we do
not have enough statistical evidence to reject the null hypothesis. Nevertheless, when
we reject a null hypothesis, this does mean that we have enough statistical evidence to
reject it.

4.3 Power Functions

Let us assume that the z;’s are distributed as F'(fx) and the y,’s are distributed as F'(fy),
where fx and #y are the parameters of the distributions. Let the null hypothesis Hy
and the alternate hypothesis H,4 be
HN . QX = (9y (1)
HA . GX 7£ (9y (2)
8



The size of the test, €, is fixed by the algorithm designer and is given as
e = P(H4|Hy is true) . (3)

The plot of 1 minus the probability of false alarm as a function of 8 is the power function.
Thus, if we fix the distribution parameter of the x;’s at x = 6y, and vary the distribution
parameter value fy = 6 for the y,’s, the power function is denoted by 7g,(8), and is given
by

760(9>:P(HA|0X:00 and 0}/:9) . (4)

Thus 1 — 74,(0) is the probability of false alarm. The power function should have a
minimum at fx = fy = 0y, with 5,(6p) = €, and should increase on either side and go
up to 1 when 8y = 6 is very far from 6.

Let us say there are two validation schemes A and B with test size ¢ and power
functions 44 () and +£ (6). Since the misdetection probability ¢ is the same for both
schemes, A is better than B if the false alarm rate of A is less than the false alarm rate of
B. That is, A is better than B if 1 -~z () < 1—~£ () or v (0) > ~741(0) . If this relation
is true for all values of 8, the procedure A is said to be uniformly more powerful than B.
That is, scheme A is better than scheme B if the power function plot of A is above the
power function plot of B for all values of #. Generalizing, if there are many validation
schemes, the one whose power function is above all other power functions is the best
scheme. If the power functions intersect, there is no clear winner; for some regions in the
parameter space one scheme is better while in other regions the other scheme is better.

1.0

P(Reject)

Figure 5: The true parameter of the sample X is Ox. The parameter Oy of the sample
Y is updated and the corresponding probability of the test rejecting the null hypothesis
that X and Y are from the same underlying distribution is plotted. The resulting curve
is the power function.

For a given validation scheme, if we increase the sample sizes N and M, the power
function changes and the new power function is higher than the old power function, and
so by definition is more powerful. Thus the sensitivity, i.e., the width of the notch at the
minimum, is a function of the sample sizes N and M. When the sample size is small,
the notch is broader, and when the sample size is large, the notch is sharper. This fact
is used in deciding what sample size should be used for the test: choose the sample size
such that the desired probability of false alarm is attained when the parameters #x and
fy differ by a specified amount A#f.



Finally, our validation scheme described in the previous section is dependent on two
distance functions p and 6. Thus, each choice of p and é gives rise to a different power
function. The combination that produces the highest power function is the best choice.
See [1] for details on power functions.

4.4 Distance Functions, Outliers, and Robust Statistics

Various distance functions p(X,Y’) can be used for computing the distance between the
sets of characters X and Y. We use the following symmetric distance functions for p.
Mean Nearest Neighbor Distance:

pMean(Y; X) + pMean(X; Y)

IO(va) = pMean(va) =

N+ M
where
prean(Y: X) = g{@g;ﬁ(fc,y))
prtean(X;Y) = X (mips(ey)
vey re

Trimmed Mean Nearest Neighbor Distance:

2

p(va) = pTTim(va) =

where

prrim(Y; X) = Trimgex (min5(:z;,y))
yey

preim(X;Y) = Trimyer (mind(z,)).
T€

Here the Trim function accepts as input a set of real numbers, orders them, and then
discards the top and bottom 10% and returns the mean of the remaining 80%.
Median Nearest Neighbor Distance:

p(X,Y) = pmea(X,Y) = (paea(Y; X) 4 prea( X5 Y)) /2
where

prmed(Y; X) = Median (min5(:z:,y))
yeY

prmed(X;Y) = Median <1£1)I(15(.1:, y)) .

Notice that the mean nearest neighbor distance is not a robust distance measure. That
is, if for some reason a data point is far from the norm, the p-value computation becomes
very sensitive to this data point. This can occur, for example, when a character in the
real data set X is actually a ‘¢’ (instead of being an ‘e,’), and is identified incorrectly as
an ‘e’. Yet another outlier source is connected characters: when characters are extracted
from a real document, they may touch other characters, pieces of which might slip in.
The median and the trimmed mean distance measures are robust against outliers since
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POX;Y) = (ug + Uy + ...+ uy)/d

P(Y:X) = (V1 + Vo + ... +Vg)/5
P(X,Y) = (p(X;Y) +p(Y;X))/2

Figure 6: The black dots are elements of the set X and the white dots are elements of
the set Y. In the figure on the left, the distance p(X;Y) from Y to X is computed by
summing the distance of each y; to the nearest z;. Similarly on the right the distance
p(Y; X) is computed. The final symmetric distance p(X,Y) is computed by taking the

mean.

they do not look at the tails of the distribution. One would expect that these measures
should work better in cases where there are outliers.

The distance function é(z,y) mentioned earlier is the distance between two individual
characters = and y. We use the Hamming distance for 6. This is computed by counting
the number of pixels where the characters x and y differ after the centroids of = and y
have been registered. A variety of other character distances 6(z,y) and set distance func-
tions p(X,Y') could have been used (e.g. the Hausdorff distance, rank-ordered Hausdorff
distance, etc.). The combination of character distance é(x,y) and set distance p(X,Y)
that gives rise to the best power function is the best pair of character and set distances
to use for the validation procedure.

5 Null Distribution for Gaussian Populations

In this section we compute the null distributions of two set distances p(X,Y) when z; and
y; are Gaussian distributed. We show that when they are each Gaussian distributed with a
known variance o2, the two distance functions considered are y? distributed under the null
hypothesis. Such closed-form solutions for the null distributions are possible only when
the underlying distributions are known a priori. However, this is not the case in general
— the Gaussian assumptions might be appropriate in some settings but completely wrong
in other settings. Thus the non-parametric permutation method described in Section 4 is
a much better approach to computing the null distributions when the forms of the sample
distributions are not known. Nevertheless, for the purpose of validating the software and
algorithm for computing the empirical null distribution, the Gaussian case is very useful
since it allows us to compare the empirical distributions against known (theoretically
computed) distributions.
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5.1 Inter-Cluster Mean Distance

Let X = {z1,2q,...,2n} be a set such that z; € R and z; ~ N(ux,c?). Similarly, let
Y = {y1,y2,...,yn} be a set such that y; € R and y; ~ N(uy,c?). The problem is to
test the null hypothesis that px = py when o? is known.

Now we know that

. 1 X
fix = NZ%NN(MXJZ/N) (5)
=1
1 N
fiv = 5 2y~ N(py,0*/N) . (6)
=1
Therefore
fix — fry ~ N(px — py,20°/N) (7)
and
NJ2(jix — i) ~ Nljux — v 1) 5)
Now let
(= pXY) = 5 — v
= p(X,Y) = o (jix — jiv)*.

Thus under the null hypothesis that px = py, we have
L=p(X,Y) ~xi . (9)

Thus, instead of empirically computing the distributions as described in Section 4 we
can use the above analytic form of the distribution to accept or reject the null hypoth-
esis. Moreover, we see that the empirical method has reduced to a standard statistical
technique when the underlying distribution is known to be Gaussian.

5.2 Likelihood Distance

In the previous section we picked a particular distance function p(X,Y’) and showed
that its null distribution is y?. In this section we pick a distance function based on the
likelihood function of the data. It turns out that this distance function is the same as
the one used in the previous section.

Let X = {z1,29,...,2n}, where z; € R, and z; ~ N(ux,oc?). Similarly, let ¥ =
{y1,y2,...,yn}, where y; € R, and y; ~ N(uy,c?). The problem is to test the null
hypothesis that px = py = p.

Let py (X) denote the distance of set X from set Y. Here we use a function of the
likelihood for p :

px(Y) = f(P(y1,...,ynl21,...,2N,0)) (10)
py(X) = f(P(z1,...,zNly1, .. yn,0)) . (11)

In general, the above distances need not be symmetricin X and Y. Hence we also consider
symmetric distances of the form

p(va) :f(P(yla"'7yN|x17"'7$N70-)P($17'"7$N|y17"'7yN70-)) : (12)
12



We can also consider the right-hand side in the equation above divided by
log max,, P(z1,...,ZN,Y1,.-.,yn|p, o). That is,

Plyi,....,yn|x1,...,xNn,0) P21, ..., 2N|Yy1, ... YN, O
p(X,Y):log( (1 maj{ 1P($ )Pl lvs AN (13)
m 1,---,$N,y1,---,yN|,U,U)

We can use the standard rules of probability theory to manipulate the above equation
as follows:

Py, .. ynl|ze, .. 2N, 0)
= /_ Plp,yi, .. ynlze, .. N, 0)dp

/00 P(yl,...,yN,fL’l,...,ZCN,[L,O')d
1
—co P(xy,...,zN,0)

/00 P(yl,...,yN|;L'1,...,:vN,;L,J)P(:xl,...,;L'N,,u,a)d
u
—co P(zy,...,2N,0)

/Oo P(ylv"-7yN|;MvO-)P(‘T17"-7$N|ﬂ70)P(ﬂ70>d

—c0 [ P(x1,...,zn|A, 0)P(X, 0)dA

(14)

Now we make the assumption that g and o are independent so that P(u, o) = P(u)P(0).
Furthermore we assume that g and o have a uniform prior. Although this implies the
prior is improper (since its integral is not equal to 1), the posterior distribution integrates
to 1. Thus P(pu,0) = P(p)P(0)  e. But the € in the numerator and the denominator of
equation (14) cancel out and the numerator can now be written as follows:

P(ylv-"7yN|;u70-)P($17'"7$N|H70)P(ﬂ70)

1 N 1 N 2 1 N 1 N 2
= e_ﬁ i=l(yi_u) . e_m ]zl(zj_:“)
2o 2ro

2N
— 1 6_#[ZL(%—M)2+E§V=1(%—M)2] ‘ (15)
2o
Since the denominator is not a function of either p or yy,...,yn, it is a constant.

The denominator can be computed by integrating out .y, ..., yny from the probability
density in equation (15). Thus

P(yr,...,ynl|21, ... 2N, 0)

00 1 2N 1 N i—p)? N e )2
_ 0/ ( ) 77 | D i P () (16)

2ro

where the constant of integration €' can be found by equating the right-hand side to 1.
In order to compute the integral, we simplify the exponent inside the integral:

Z:(yi — )+ Z:(l’j —p)?
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But

Thus from equations (18) and (17)

Also, since

we have

1

L. s ™

1

I
&8
[\~]
+
=
[\~]
+
[N
—
=
[\~]
|
SV
=
TN
831
+
2
~—

I
8
[\~]
+
=
[\~]
|
DO
=
TN
81
+
2y
N
(v}

Py, .. ynl|ze, ... 2N, 0)

2no

- o(m)”
of

V2N

Now to get the value of C' we proceed as follows:

1

2o

2N
)

;(#_H_@

_# [211 (y"_ﬂ)2+2jv=1 (%‘#)2]

14

em {Zfil(fé—f)2+2f=1(yj—ﬂ)2+§(f—@)2} '

dyy ...dyndp

(17)

(18)

(19)

(20)

(21)



1 N 1 N =2 =12
= C/( ) e—m[ o1 N(2i=Z)*+N(u-1%) ]d,u

2ro
1 N oo 1 N (zi—7)2
e oA [Lim (2], (22)
2no \/ﬁ
Thus we have computed C' to be
—(N+1)
1 1 SN (72
C = ( > ) VNeAm L @] (23)
To

We now can write the complete conditional density as

P(yi,...,yn|z1,. .., 2N, 0)

_ [( ! >_(N+1)\/ﬁem[2511(m—r)2]]

2o

( ! )m 20 i | i Y -4 S -0
V2N

N

2o

2no

Thus we can use 20? times the negative exponent of the conditional probability, as
given in equation (24), as the test statistic px(Y'). Notice that it is not symmetric in X
and Y.

pX(Y) = f(P(yla'"7yN|:E17'-'7$N70-)> (25)
N 1
— 0g P (g1l ,0) + s log(2mat) — Hlog(2) (20
N N
= 29+ -y (27)
py(X) = f(P(xlv'--7IN|y17"'7yN7U)) (28)
N 1
= _logP($17"'7$N|y17'"7yN70-)—I_ ?log(Z’]TO'Q) - §log(2) (29)
N N

In order to get a symmetric test statistic, we can look at the product of the conditional
probabilities, so that

px(Y) +py(X) =2 (yi —9)" + %x —y) X (mi— )t %(y —o)h (31

But we know that the sum of the within-cluster scatter and the between-cluster scatter
is equal to the total scatter. Thus

g;(yi—y)ugu—y)ué(@—m)?:é(w— (;y))+ (i - (;y)) |



Notice that for given data sets, the above summation is the same constant regardless of
which points go with z; and which with y;. Thus

N
px(Y)+pr(X) =C+ oy —2)° (32)
where (' is a constant. Thus a symmetric test statistic based on likelihood is
N
pXY) =5 —-1)°. (33)

The reason for normalizing by o? will become clear shortly.

Monte Carlo hypothesis tests can now be conducted with the distance functions p
defined in this section. In Figure 7 we show that the theoretically computed null distri-
bution agrees with the null distribution computed empirically by random permutations.

It is important to statistically compare the test statistics px(Y), py (X), and p(X,Y)
computed in this section. Notice that

z ~ N(0,0%/N),
y o~ N(0702/N>7
T—y ~ N(0,20°/N).
Thus
B 202
(l’—y) ~ WX%
and
N 2
pPXY) =55 (@ =9 ~ xi (34)

Thus p(X,Y) has a mean of 1 and variance of 2. Similarly,
| N
21— 9" ~ Xh
=1
Thus
1 o N 2 2
g;(yz 9+ 55@ =)~ Xy
so that
px(Y) ~ Xy - (35)

We see that px(Y) has a mean of N and variance of 2N. This implies that p(X,Y) is a
more powerful test statistic (in terms of false alarms) than px(Y') or py (X).

6 Experimental Protocol and Results

In this section we outline the protocol we use to conduct the experiments. Here we give
all the sample sizes we use, the numbers of trials that are run at different stages, the
exact model parameter values that are used for generating the synthetically degraded
characters, the impact of the distance functions, etc. Three types of experiments are
possible:
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Synthetic vs. Synthetic: One sample X is synthetically created using the document
degradation model, with a fixed model parameter value. Then many samples Y
are generated, again using the model, but with different parameter settings. The
validation procedure can be run on the samples X and Y, and the power function
generated. This experiment is in part a sanity check for the methodology: if it does
not work on controlled synthetic data, there is little point in trying it on real data.

Real vs. Real: This experiment tests for systematic dissimilarities between two im-
age populations (e.g. rotations, fonts, etc.). Note that this use of the validation
procedure is independent of the degradation model.

Real vs. Synthetic: Here the sample X consists of real degraded characters and the
sample Y is generated by varying the degradation model parameter ©. The valida-
tion procedure is run on the X and Y samples, and a power function is generated.
This experiment tests whether or not the synthetic characters are actually close to
the real characters.

6.1 Protocol for Synthetic vs. Synthetic

The following protocol is used for creating the samples X and Y. The distribution pa-
rameter Ox is fixed with the following parameter component values: 7y = n, = 0,
ap = Po =1, a = = 1.5, and structuring element size £k = 5. The distribution parame-
ter Oy is varied by varying « and . In our experiments we make « equal to 3. The other
parameter components of Oy — ny, np, ag, fo, k — are made equal to the corresponding
components of the model parameter © x. In all cases the noise-free document is the same
(a BTEX document page formatted in IEEE Transactions style) and the same set of 340
characters ‘e’ (Computer Modern Roman 10 point font) are extracted from the page to
create the samples X and Y.
The validation procedure parameters used are as follows:

1. Sizes of samples X and Y: N = M = {10,20,60}.

2. Number of permutations: K = 1000.

3. Significance level of the test: e = 0.05.

4. Number of repetitions used in computing the power function: 7' = 100.

5. The character-to-character distance 6(x,y) used is the Hamming distance.
6. The set-to-set distance p(X,Y) used is the mean nearest-neighbor distance.

The noise-free document is shown in Figure 8(a). The degraded document generated
with model parameter © x is shown in Figure 8(b). The power functions for sample sizes
10, 20, 60 are shown in Figure 9. The power function corresponding to sample size 10 1s
the widest, and the power function corresponding to sample size 60 is the narrowest. Note
that all three power functions give a misdetection (reject) rate close to € = 0.05 when Oy
is close to @ x. (Only the o component, which is equal to 1.5 for ©x, is shown in the plot.)
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Furthermore, when the o component for Oy is far from 1.5, the misdetection rate is close
to 1.0, which implies that the validation procedure can distinguish the two samples with
high probability. An image generated with o = 3 = 1.7 that the validation procedure
accepted with a probability close to 0.9 is shown in Figure 8(c). Two document images
generated with parameter values @ = = 2.0 and o = § = 0.9 that are easily rejected
by the validation procedure are shown in Figure 8(d) and Figure 8(e), respectively.

6.2 Protocol for Real vs. Real Experiment

First, various European language texts are generated using the Adobe Times-Roman
typeface at 8 point. Next, these documents are printed on a Canon laser printer and
then scanned at 400 pixels per inch using a Canon scanner. Lower-case ‘e’s are extracted
semiautomatically by OCR (thus some characters possess artifacts resulting from reseg-
mentation). From among these, 3000 characters are selected by two persons working
independently to avoid misclassifications.

Before selecting the two populations, we randomly shuffle the real data in order to
obscure any systematic per-page dissimilarities (due to, for example, skew scale varia-
tions). The validation procedure does not reject the null hypothesis that the two samples
are from the same underlying population. Repeated trials give a reject rate close to 0.05,
the significance level designed into the test.

6.3 Outliers and Distance Function Comparisons

The validation procedure protocol is as follows: the significance level € is fixed at 0.05;
the sample sizes N = M used are 10, 20, and 60; the number of permutations K for
creating the empirical null distribution is 1000; the number of trials T' for estimating the
misdetection rate is 100.

We studied the sensitivity of the validation procedure to the set distance p(X,Y) as
follows. The data sets X and Y are collections of (synthetic) degraded characters ‘e’.
The degradation parameter values for X are fixed at = # = 1.5, but the corresponding
degradation parameters for Y are varied from 0.6 to 2.4. The Hamming distance is used
for the character-to-character distance 6(z,y). The sample size of X and Y is fixed at
N = M = 60. The mean, trimmed mean and median distances are used to compute the
power function, in both the presence and absence of outliers.

Figures 10(a), 11(a), and 12(a) show the power functions in the absence of outliers
when the mean and trimmed mean distances are used. Next, we introduced outliers
into the data set X by replacing five degraded ‘e’s with degraded ‘c’s. The Y data
set is unchanged. Figures 10(b), 11(b), and 12(b), show the power functions in the
presence of outliers. Clearly the median and trimmed mean nearest neighbor distances
are more robust against outliers, since the corresponding power functions are not affected.
Furthermore, it can be seen that the median NN distance function, in the outlier-free
case, is less “powerful” than the mean NN distance function since the median distance
power function plot lies below the mean distance power function plot. Finally, it can be
seen that the 10% trimmed NN distance function is superior to the other two distance
functions, since the corresponding power function is robust against outliers and at the
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same time higher.

6.4 Protocol for Validating Real vs. Synthetic Degradations

The ideal data is a BTEX formatted document. The IEEE Transactions style is used
for typesetting the document. The corresponding ideal binary image and character
groundtruth are created using the DVI2TIFF software. The ideal document is created at
300 x 300 dots/inch resolution; the size of the binary document in pixels is 3300 x 2550.
This document is printed using a SparcPrinter II. Next, the original printed document
is photocopied five times using a Xerox photocopier — once at the normal setting, twice
with darker settings, and twice with lighter settings. Finally the five photocopied doc-
uments are scanned using a Ricoh scanner. The scanner is set at 300 x 300 dots/inch
resolution. The rest of the scanner parameters are set at normal settings. The scanned
binary image is of size 3307 x 2544. The parameters are then estimated using the proto-
col specified in [12]. In all cases the noise-free document is the same (a WTEX document
page formatted in IEEE Transactions style) and the same set of 340 characters ‘¢’ (Com-
puter Modern Roman 10 point font) is extracted from the page to create the synthetic
population Y.
The validation procedure parameters used are as follows:

1. Sample sizes of scanned characters X and synthetic characters Y: N = M =

{10,20,60}.
2. Number of permutations for creating the empirical null distribution: K = 1000.
3. Significance level of the test: e = 0.05.
4. Number of bootstrap repetitions for computing the reject rate of the test: T'= 100.

5. The bootstrap samples are sampled (with replacement) from a pool of size N, =

100.
6. The character-to-character distance 6(z,y) used is the Hamming distance.
7. The set-to-set distance p(X,Y') used is the mean nearest-neighbor distance.

The above test was conducted on ‘e’s. The test did not reject the null hypothesis that
the samples are from the same population for a sample size of 10. That is, the reject rate
is lower than 5%. For the sample size of 20, 46% of the time the test rejected the null
hypothesis. For sample size of 60, the null hypothesis was rejected 100% of the time.

6.5 Comparing Two Models

In the previous section we used a two-sample permutation procedure to test the null
hypothesis that the sample of real degraded characters and the sample generated by the
estimated degradation model are from the same underlying population. We found that
when the sample size is 40, the test procedure rejects the null hypothesis.
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In fact, in a two-sample test, if one of the samples is from a distribution that is even
slightly different from the second sample’s distribution, the statistical testing procedure
will be able to reject the null hypothesis that the samples are from the same underlying
population if the sample size is large enough.

Since we know that any model of a real process, with very high likelihood, is an
approximation to the real process, the samples generated from the model will be different
from the real samples. Thus any validation procedure will be able to distinguish the real
and synthetic samples if the sample sizes are large enough. In other words, it is futile
to test the equality of the distributions of the synthetic samples and the real samples;
they will always be proved to be unequal if a large enough sample size is used. Even if
some other validation procedure is used, for example any method based on comparison
of confusion matrices, the equality test is always going to give a negative result when the
sample size is made large enough.

The next question is: How can one use the validation procedure in practice if the
models are always going to be proved incorrect? The way to use the validation procedure
is to compare two models and not evaluate just one model. That is, one can use the
validation procedure to determine which model is closer to reality.

Suppose we have two document degradation models M; and M;. The problem is to
find the model that is closer to the real process. We know that if the sample size N of
the synthetic and real samples is increased, after a certain point the validation procedure
will start rejecting both models. However, we will now give a procedure that will allow
a researcher to decide which model is closer to reality for a fixed sample size N.

1. Fix the sample size V.
2. We are given a real sample D of size N.

3. Generate synthetic samples S; and Sy of size N using the models M; and M,
respectively.

4. Conduct the two-sample validation test using the real sample D and the synthetic
sample S7. Let the associated p-value be p;.

5. Conduct the two-sample validation test using the real sample D and the synthetic
sample S;. Let the associated p-value be py.

6. If p1 > py, model My is closer to the real process for a sample size of N. Otherwise
model M, is closer.

Thus the above procedure allows a researcher to choose between models. When we
were choosing between parameter settings for a fixed model, we could use the power
function to arrive at the best parameter sitting. However, two different models have
different parameter spaces and hence they cannot compared using power functions. The
p-value provides a means of comparing the models on a common basis.
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7 Conclusions

We have posed the degradation model validation problem as a statistical, two-sample,
hypothesis testing problem. A non-parametric permutation test is used for this purpose.
The user specifies a test statistic, which is essentially a distance function on the two
sets of degraded characters. The null distribution of the test statistic, which is the
distribution of the test statistic under the hypothesis that the two samples come from
the same underlying population, is created using a permutation procedure. The p-value
corresponding to the test statistic associated with the two sets is computed and compared
with a user-specified significance level to reject or not reject the null hypothesis. This
procedure and several robust variants are implemented and evaluated empirically. The
goodness of the distance functions is evaluated using power functions, which are standard
statistical devices. The local degradation model passes the validation test when the
sample size is small but rejects it when the sample size is increased. This is so because
any model of a real-world process is an approximation and thus will not pass the test
if the sample size is increased. Another way of using the validation procedure is for
choosing between models. After the validation procedure is run, a p-value is obtained.
Thus if two different models are tested on the same real data, each validation procedure
gives rise to a p-value for each model. The model whose associated p-value is larger is in
closer agreement with the real data and thus should be preferred.

8 Acknowledgement

We would like to thank Azriel Rosenfeld of the University of Maryland for his comments.
This research was funded in part by the Department of Defense and the Army Research
Laboratory under Contract MDA 9049-6C-1250.

References

[1] S. F. Arnold. Mathematical Stalistics. Prentice-Hall, New Jersey, 1990.

[2] H. Baird. Document image defect models. In Proc. of IAPR Workshop on Syntactic
and Structural Pattern Recognition, pages 38—46, Murray Hill, NJ, June 1990.

[3] H. Baird. Calibration of document image defect models. In Proc. of Second An-
nual Symposium on Document Analysis and Information Retrieval, pages 1-16, Las

Vegas, NV, April 1993.

[4] H. S. Baird. Document image defect models. In Structured Document Image Anal-
ysis. Springer-Verlag, New York, 1992.

[5] G. Borgerfors. Distance transforms in digital images. Computer Vision, Graphics,

and Image Processing, 34:344-371, 1986.

[6] DARPA. Proceedings of DARPA Workshop on Document Understanding. Palo Alto,
CA, 1992.

21



7]

[13]

[14]

[15]

[16]

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, New York, 1993.

P. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypotheses. Springer-Verlag, New York, 1994.

R. M. Haralick, I. Phillips, et al. UW-CDROM-I.

R.M. Haralick. Performance assessment of near perfect machines. Machine Vision
and Applications, 2:1-16, 1989.

R.M. Haralick and L.G. Shapiro. Computer and Robot Vision. Addison-Wesley,
Massachusetts, 1992.

T. Kanungo. Document Degradation Models and a Methodology for Degradation
Model Validation. PhD thesis, University of Washington, Seattle, WA, 1996.
http://www.cfar.umd.edu/ kanungo/pubs/phdthesis.ps.Z.

T. Kanungo and R. M. Haralick. Estimation of morphological degradation param-
eters. In SPIE Proceedings, volume 2424, pages 86-95, San Jose, CA, February
1995.

T. Kanungo, R. M. Haralick, H. S. Baird, W. Stuetzle, and D. Madigan. Document
degradation models: Parameter estimation and model validation. In Proc. of Int.
Workshop on Machine Vision Applications, Kawasaki, Japan, December 1994.

T. Kanungo, R. M. Haralick, and 1. Phillips. Global and local document degradation
models. In Proc. of Second Int. Conf. on Document Analysis and Recognition, pages

730-734, Tsukuba, Japan, October 1993.

T. Kanungo, R. M. Haralick, and 1. Phillips. Non-linear local and global document
degradation models. Int. Journal of Imaging Systems and Technology, 5:220-230,
1994.

T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. Haralick. A quantitative method-
ology for analyzing the performance of detection algorithms. In IEEFE Int. Conf. on
Computer Vision, pages 247-252, Berlin, Germany, May 1993.

T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. Haralick. A methodology for
quantitative performance evaluation of detection algorithms. IEEF Trans. on Image

Processing, 4:1667-1674, 1995.
D. E. Knuth. TEX: the program. Addison-Wesley, Massachusetts, 1988.

L. Lamport. LATEX: a document preparation system. Addison-Wesley, Mas-
sachusetts, 1986.

Y. Li, D. Lopresti, and A. Tomkins. Validation of document defect models for optical
character recognition. In Proc. of Third Annual Symposium on Document Analysis

and Information Retrieval, pages 137150, Las Vegas, NV, April 1994.
22



[22] Y. Li, D. Lopresti, and A. Tomkins. Validation of document defect models. [EEE
Trans. on Pattern Analysis and Machine Intelligence, 18:99-107, 1996.

[23] G. Nagy. Validation of OCR data sets. In Proc. of Third Annual Symposium on
Document Analysis and Information Retrieval, pages 127-135, Las Vegas, NV, April
1994.

[24] P. Vojta et al. XDVI Software, 1990.

23



Empirical and Theoretical Null Distribution
N = 75; Num Permuts = 1000; x,y ~ N(15,1); t ~ X,”
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Figure 7: Empirical and theoretical null distributions for two sample tests. Samples
X and Y of size N = 75 are drawn from N(15,1). The empirical null distribution is
computed as described in Section 4. We use 1000 random permutations for computing
the distribution. The distance function used is t = p(X,Y) = N(z — y)*/(20?). The
theoretical distribution of ¢ is y?. The empirical and theoretical plots have been plotted
together in this figure.
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Figure 8: Local document degradation model. (a) Subimage of the noise-free document.
(b) Degraded document generated with o = 3 = 1.5. (¢) A degraded image accepted as
similar to (b), @« = # = 1.7; (d) A degraded image rejected as similar to (b), « = 3 = 0.9;
(e) A degraded image rejected as similar to (b), & = # = 2.0. The sample size used is 60.
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Figure 9: Power plots for the local document degradation model. The parameters for X
were fixed with @ = = 1.5, while the parameters for Y were varied. Notice that the
power function has a minimum near o = § = 1.5. The power function corresponding to
a sample size of 60 (boxes) is sharper; that corresponding to a sample size of 10 (crosses)
is broader.
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Probability of Reject

Figure 10: Power functions of the validation procedure when mean nearest neighbor
distance is used for the set distance function p(X,Y). Figure (a) is when there are no
outliers. Figure (b) corresponds to the situation when there are five outliers in one of

the data sets.
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Figure 11: Power functions of the validation procedure when median nearest neighbor
distance is used for the set distance function p(X,Y). Figure (a) is when there are no
outliers. Figure (b) corresponds to the situation when there are five outliers in the X

data set.
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Probability of Reject

Figure 12: Power functions of the validation procedure when 10% trimmed mean nearest
neighbor distance is used for the set distance function p(X,Y’). Figure (a) is when there
are no outliers. Figure (b) corresponds to the situation when there are five outliers in

the X data set.

Power Function (TrimMean)

Alpha (=Beta) Parameter Value

(a)

27

Probability of Reject

Power Function (TrimMean)

Alpha (=Beta) Parameter Value

(b)



